Extensions 1→N→G→Q→1 with N=C32:3Q16 and Q=C2

Direct product G=NxQ with N=C32:3Q16 and Q=C2
dρLabelID
C2xC32:3Q1696C2xC3^2:3Q16288,483

Semidirect products G=N:Q with N=C32:3Q16 and Q=C2
extensionφ:Q→Out NdρLabelID
C32:3Q16:1C2 = S3xDic12φ: C2/C1C2 ⊆ Out C32:3Q16964-C3^2:3Q16:1C2288,447
C32:3Q16:2C2 = D6.1D12φ: C2/C1C2 ⊆ Out C32:3Q16484C3^2:3Q16:2C2288,454
C32:3Q16:3C2 = C24.3D6φ: C2/C1C2 ⊆ Out C32:3Q16964-C3^2:3Q16:3C2288,448
C32:3Q16:4C2 = Dic12:S3φ: C2/C1C2 ⊆ Out C32:3Q16484C3^2:3Q16:4C2288,449
C32:3Q16:5C2 = D12.29D6φ: C2/C1C2 ⊆ Out C32:3Q16484-C3^2:3Q16:5C2288,479
C32:3Q16:6C2 = Dic6.29D6φ: C2/C1C2 ⊆ Out C32:3Q16484C3^2:3Q16:6C2288,481
C32:3Q16:7C2 = D12.22D6φ: C2/C1C2 ⊆ Out C32:3Q16488-C3^2:3Q16:7C2288,581
C32:3Q16:8C2 = D12.8D6φ: C2/C1C2 ⊆ Out C32:3Q16488-C3^2:3Q16:8C2288,584
C32:3Q16:9C2 = S3xC3:Q16φ: C2/C1C2 ⊆ Out C32:3Q16968-C3^2:3Q16:9C2288,590
C32:3Q16:10C2 = Dic6.9D6φ: C2/C1C2 ⊆ Out C32:3Q16488-C3^2:3Q16:10C2288,592
C32:3Q16:11C2 = Dic6.19D6φ: C2/C1C2 ⊆ Out C32:3Q16488-C3^2:3Q16:11C2288,577
C32:3Q16:12C2 = Dic6.D6φ: C2/C1C2 ⊆ Out C32:3Q16488-C3^2:3Q16:12C2288,579
C32:3Q16:13C2 = D12.24D6φ: C2/C1C2 ⊆ Out C32:3Q16968-C3^2:3Q16:13C2288,594
C32:3Q16:14C2 = D12.15D6φ: C2/C1C2 ⊆ Out C32:3Q16488-C3^2:3Q16:14C2288,599
C32:3Q16:15C2 = D12.27D6φ: trivial image484C3^2:3Q16:15C2288,477


׿
x
:
Z
F
o
wr
Q
<